Question:

The maximum value of $xe^{ -x}$ is

Updated On: Apr 17, 2024
  • $e$
  • $\frac {1}{e}$
  • $-e$
  • $-\frac {1}{e}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Let $y=x e^{-x}\,\,\,\,\,$
On differentiating w.r.t. ' $x$ ', we get
$\frac{d y}{d x}=x e^{-x}(-1)+e^{-x} $
$\frac{d y}{d x}=e^{-x}(1-x)$
For maximum or minimum,
$\frac{dy}{dx}=0$
$\Rightarrow e^{-x}(1-x)=0$
$\Rightarrow 1-x=0$
$\because e^{-x} \ne 0)$
$\Rightarrow x=1$
From E (ii), we get
$\frac{d^{2} y}{d x^{2}}=e^{-x}(-1)+(1-x) e^{-x}(-1) $
$=-e^{-x}-e^{-x}+x e^{-x} $
$=-2 e^{-x}+x e^{-x} $
$\frac{d^{2} y}{d x^{2}}=e^{-x}(x-2) $
$\left(\frac{d^{2} y}{d x^{2}}\right)_{\text {at } x=1} =e^{-1}(1-2)=\frac{1}{e}(-1) $
Negative value
$\therefore$ At $x=1, \,y$ is maximum and maximum value $=1 e^{-1}$
$=\frac{1}{e}$
Was this answer helpful?
1
0

Concepts Used:

Maxima and Minima

What are Maxima and Minima of a Function?

The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.

There are two types of maxima and minima that exist in a function, such as:

  • Local Maxima and Minima
  • Absolute or Global Maxima and Minima