Step 1: Differentiate $y$.
\[
y' = \frac{(2x)(x^4 + 4) - x^2(4x^3)}{(x^4 + 4)^2} = \frac{2x(x^4 + 4 - 2x^4)}{(x^4 + 4)^2} = \frac{2x(4 - x^4)}{(x^4 + 4)^2}.
\]
Step 2: Set derivative to zero.
\[
2x(4 - x^4) = 0 \implies x = 0 \text{ or } x^4 = 4 \implies x = \pm \sqrt{2}.
\]
Step 3: Evaluate $y$ at critical points.
At $x = 0$: $y = 0$.
At $x = \sqrt{2}$: $y = \dfrac{2}{4 + 4} = \dfrac{1}{4}$.
Step 4: Conclusion.
\[
\boxed{\text{Maximum value is } \frac{1}{4}.}
\]
Prove that the height of the cylinder of maximum volume inscribed in a sphere of radius \( R \) is \( \frac{2R}{\sqrt{3}} \).