The maximum value of \( f(x, y, z) = 10x + 6y - 8z \) subject to the constraints \[ 5x - 2y + 6z \leq 20, \quad 10x + 4y - 6z \leq 30, \quad x, y, z \geq 0, \] is equal to …………. (round off to TWO decimal places).
Step 1: Linear programming formulation. The problem involves maximizing \( f(x, y, z) = 10x + 6y - 8z \) subject to the given constraints.
Step 2: Solving using the simplex method. By applying the simplex method or computational tools, the optimal point is determined to be \( (x, y, z) = (3.33, 5, 0) \).
Step 3: Calculating \( f(x, y, z) \). Substituting into \( f(x, y, z) \), the maximum value is \( 56.66 \).
Step 4: Conclusion. The maximum value is \( {56.66} \).
Consider the following Linear Programming Problem $ P $: Minimize $ x_1 + 2x_2 $, subject to
$ 2x_1 + x_2 \leq 2 $,
$ x_1 + x_2 = 1 $,
$ x_1, x_2 \geq 0 $.
The optimal value of the problem $ P $ is equal to:
Let $D = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } y > 0\}$. If the following second-order linear partial differential equation
$y^2 \frac{\partial^2 u}{\partial x^2} - x^2 \frac{\partial^2 u}{\partial y^2} + y \frac{\partial u}{\partial y} = 0$ on $D$
is transformed to
$\left( \frac{\partial^2 u}{\partial \eta^2} - \frac{\partial^2 u}{\partial \xi^2} \right) + \left( \frac{\partial u}{\partial \eta} + \frac{\partial u}{\partial \xi} \right) \frac{1}{2\eta} + \left( \frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \right) \frac{1}{2\xi} = 0$ on $D$,
for some $a, b \in \mathbb{R}$, via the coordinate transform $\eta = \frac{x^2}{2}$ and $\xi = \frac{y^2}{2}$, then which one of the following is correct?
Let \( p_1<p_2 \) be the two fixed points of the function \( g(x) = e^x - 2 \), where \( x \in {R} \). For \( x_0 \in {R} \), let the sequence \( (x_n)_{n \geq 1} \) be generated by the fixed-point iteration \[ x_n = g(x_{n-1}), \quad n \geq 1. \] Which one of the following is/are correct?
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.
A square paper, shown in figure (I), is folded along the dotted lines as shown in figures (II) and (III). Then a few cuts are made as shown in figure (IV). Which one of the following patterns will be obtained when the paper is unfolded?