Step 1: Formula for density of wire.
\[ \rho = \frac{m}{V} = \frac{m}{\pi r^2 l}. \]
Step 2: Expression for percentage error.
When a quantity depends on multiple measurements, \[ \frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} + 2\frac{\Delta r}{r} + \frac{\Delta l}{l}. \]
Step 3: Substitute the given data.
\[ \frac{\Delta m}{m} = \frac{0.003}{0.60} = 0.005 = 0.5\%, \] \[ \frac{\Delta r}{r} = \frac{0.01}{0.50} = 0.02 = 2\%, \] \[ \frac{\Delta l}{l} = \frac{0.05}{10.00} = 0.005 = 0.5\%. \]
Step 4: Calculate total percentage error.
\[ \text{Total percentage error} = 0.5 + 2(2) + 0.5 = 0.5 + 4 + 0.5 = 5\%. \]
\[ \boxed{\text{Maximum percentage error in density} = 5\%} \]
A physical quantity C is related to four other quantities p, q, r and s as follows $ C = \frac{pq^2}{r^3 \sqrt{s}} $ The percentage errors in the measurement of p, q, r and s are 1%, 2%, 3% and 2% respectively. The percentage error in the measurement of C will be _______ %.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: