Given matrix:
The matrix is: \(\begin{bmatrix} -2 & 1 & 0 \\ 3 & 4 & 1 \\ -4 & \lambda & 0 \end{bmatrix}\)
Goal: Determine the value of \(\lambda\) for which the matrix is non-singular.
Explanation:
A matrix is non-singular if its determinant is non-zero. So, we need to find the determinant of the given matrix and solve for \(\lambda\) when the determinant is non-zero.
Step 1: Compute the determinant of the matrix.
We will use cofactor expansion along the first row to find the determinant:
Determinant = \(\text{det}\begin{bmatrix} -2 & 1 & 0 \\ 3 & 4 & 1 \\ -4 & \lambda & 0 \end{bmatrix}\) =
\(-2 \times \text{det}\begin{bmatrix} 4 & 1 \\ \lambda & 0 \end{bmatrix} - 1 \times \text{det}\begin{bmatrix} 3 & 1 \\ -4 & 0 \end{bmatrix} + 0 \times \text{det}\begin{bmatrix} 3 & 4 \\ -4 & \lambda \end{bmatrix}\)
Step 2: Compute the 2x2 determinants.
\(\text{det}\begin{bmatrix} 4 & 1 \\ \lambda & 0 \end{bmatrix} = (4)(0) - (1)(\lambda) = -\lambda\)
\(\text{det}\begin{bmatrix} 3 & 1 \\ -4 & 0 \end{bmatrix} = (3)(0) - (1)(-4) = 4\)
Step 3: Substitute these values into the determinant formula.
Determinant = \(-2 \times (-\lambda) - 1 \times 4\)
Determinant = \(2\lambda - 4\)
Step 4: Set the determinant to non-zero for the matrix to be non-singular.
For the matrix to be non-singular, we need the determinant to be non-zero:
2\lambda - 4 \neq 0
Step 5: Solve for \(\lambda\).
\(2\lambda - 4 = 0 \quad ⟹ \quad 2\lambda = 4 \quad ⟹ \quad \lambda = 2\)
Conclusion:
The matrix is non-singular for \(\lambda \neq 2\).
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is: