Explanation:
The matrix \(\begin{bmatrix} 5 & 10 & 3 \\ -2 & -4 & -6 \\ -1 & -2 & b \end{bmatrix}\) is singular, if \(\begin{vmatrix} 5 & 10 & 3\\ -2 & -4 & 6\\ -1 & -2 & b \end{vmatrix} = 0\)
⇒ The given matrix is singular for any
⇒ −1(60+12) + 2(30+6) + b(−20+20) = 0
⇒ −72 + 72 + 0b = 0
⇒ 0 = 0
Therefore, there is no specific value.
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
In the expansion of $\left( \sqrt{5} + \frac{1}{\sqrt{5}} \right)^n$, $n \in \mathbb{N}$, if the ratio of $15^{th}$ term from the beginning to the $15^{th}$ term from the end is $\frac{1}{6}$, then the value of $^nC_3$ is: