Explanation:
The matrix \(\begin{bmatrix} 5 & 10 & 3 \\ -2 & -4 & -6 \\ -1 & -2 & b \end{bmatrix}\) is singular, if \(\begin{vmatrix} 5 & 10 & 3\\ -2 & -4 & 6\\ -1 & -2 & b \end{vmatrix} = 0\)
⇒ The given matrix is singular for any
⇒ −1(60+12) + 2(30+6) + b(−20+20) = 0
⇒ −72 + 72 + 0b = 0
⇒ 0 = 0
Therefore, there is no specific value.
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]