Explanation:
The matrix \(\begin{bmatrix} 5 & 10 & 3 \\ -2 & -4 & -6 \\ -1 & -2 & b \end{bmatrix}\) is singular, if \(\begin{vmatrix} 5 & 10 & 3\\ -2 & -4 & 6\\ -1 & -2 & b \end{vmatrix} = 0\)
⇒ The given matrix is singular for any
⇒ −1(60+12) + 2(30+6) + b(−20+20) = 0
⇒ −72 + 72 + 0b = 0
⇒ 0 = 0
Therefore, there is no specific value.
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: