Step 1: Acceleration of rolling objects
The acceleration of a rolling object down an incline is given by:
\[
a = \frac{g \sin \theta}{1 + \frac{K^2}{R^2}}.
\]
where:
- \( g \) is the acceleration due to gravity,
- \( \theta \) is the angle of inclination,
- \( K \) is the radius of gyration,
- \( R \) is the radius of the cylinder.
Step 2: Moment of inertia considerations
For different objects:
- Solid Cylinder: \( I = \frac{1}{2} m R^2 \), so \( K^2 = \frac{R^2}{2} \).
- Hollow Cylinder: \( I = m R^2 \), so \( K^2 = R^2 \).
Step 3: Acceleration ratio
The acceleration expression becomes:
- For the solid cylinder:
\[
a_s = \frac{g \sin \theta}{1 + \frac{1}{2}} = \frac{g \sin \theta}{\frac{3}{2}}.
\]
\[
a_s = \frac{2}{3} g \sin \theta.
\]
- For the hollow cylinder:
\[
a_h = \frac{g \sin \theta}{1 + 1} = \frac{g \sin \theta}{2}.
\]
Step 4: Finding \( a_h \)
Given \( a_s = 4 { ms}^{-2} \), we set up the ratio:
\[
\frac{a_h}{a_s} = \frac{\frac{g \sin \theta}{2}}{\frac{2 g \sin \theta}{3}} = \frac{1}{2} \times \frac{3}{2} = \frac{3}{4}.
\]
\[
a_h = \frac{3}{4} \times 4 = 3 { ms}^{-2}.
\]
Step 5: Conclusion
Thus, the acceleration of the hollow cylinder is:
\[
3 { ms}^{-2}.
\]