Question:

The magnitude of vectors $ \overrightarrow{A}$, $\overrightarrow{B}$ and $ \overrightarrow{C} $ are 3, 4 and 5 units respectively. If $ \overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C}$, the angle between $ \overrightarrow{A} $ and $ \overrightarrow{B} $ is

Updated On: Apr 27, 2024
  • $\pi / 2$
  • $ \cos^{ - 1} (0 . 6)$
  • $ \tan^{ - 1} \, (7/5)$
  • $ \pi / 4 $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let $ \theta $ angle between $ \overrightarrow{A} $ and $ \overrightarrow{B} $
Given : $ A = | \overrightarrow{A} | = 3 \, units$
$ B+ | \overrightarrow{B} | = 4\, units $
$ C = | \overrightarrow{C} | = 5 \,units $
$ \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} $
$\therefore ( \overrightarrow{A} + \overrightarrow{B} ) \cdot ( \overrightarrow{A} + \overrightarrow{B} ) = \overrightarrow{C} \cdot \overrightarrow{C} $
$ \overrightarrow{A} \cdot \overrightarrow{A} + \overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{B} \cdot \overrightarrow{A} + \overrightarrow{B} \cdot \overrightarrow{B} = \overrightarrow{C} \cdot \overrightarrow{C} $
$ A^2 + 2 A B \cos \theta + B^2 = C^2$
$9 + 2AB \cos \theta + 16 = 25$ or $ 2 A B \cos \theta = 0 $
or $ \cos \theta = 0 \therefore \theta = 90^\circ$.
Was this answer helpful?
0
0

Top Questions on Motion in a plane

View More Questions

Questions Asked in NEET exam

View More Questions

Concepts Used:

Motion in a Plane

It is a vector quantity. A vector quantity is a quantity having both magnitude and direction. Speed is a scalar quantity and it is a quantity having a magnitude only. Motion in a plane is also known as motion in two dimensions. 

Equations of Plane Motion

The equations of motion in a straight line are:

v=u+at

s=ut+½ at2

v2-u2=2as

Where,

  • v = final velocity of the particle
  • u = initial velocity of the particle
  • s = displacement of the particle
  • a = acceleration of the particle
  • t = the time interval in which the particle is in consideration