Let $ \theta $ angle between $ \overrightarrow{A} $ and $ \overrightarrow{B} $
Given : $ A = | \overrightarrow{A} | = 3 \, units$
$ B+ | \overrightarrow{B} | = 4\, units $
$ C = | \overrightarrow{C} | = 5 \,units $
$ \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} $
$\therefore ( \overrightarrow{A} + \overrightarrow{B} ) \cdot ( \overrightarrow{A} + \overrightarrow{B} ) = \overrightarrow{C} \cdot \overrightarrow{C} $
$ \overrightarrow{A} \cdot \overrightarrow{A} + \overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{B} \cdot \overrightarrow{A} + \overrightarrow{B} \cdot \overrightarrow{B} = \overrightarrow{C} \cdot \overrightarrow{C} $
$ A^2 + 2 A B \cos \theta + B^2 = C^2$
$9 + 2AB \cos \theta + 16 = 25$ or $ 2 A B \cos \theta = 0 $
or $ \cos \theta = 0 \therefore \theta = 90^\circ$.