Step 1: Relationship between electric and magnetic fields in an EM wave.
In a plane electromagnetic wave traveling through free space: \[ \frac{E}{B} = c \] where \( c \) is the speed of light.
Step 2: Express speed of light in terms of \( \mu_0 \) and \( \varepsilon_0 \). \[ c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \Rightarrow B = \frac{E}{c} = E \cdot \sqrt{\mu_0 \varepsilon_0} \]
Step 3: Use identity involving magnetic field. We rewrite \( \sqrt{\mu_0 \varepsilon_0} = \sqrt{\mu_0 / (1/\varepsilon_0)} = \frac{1}{\sqrt{\mu_0/\varepsilon_0}} \)
Step 4: Final expression. \[ B = \frac{E}{\sqrt{\mu_0/\varepsilon_0}} \] which matches option (3).
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)