The magnetic moment \( \mu \) of an electron moving in a circular orbit is given by the formula:
\[
\mu = I \times A
\]
Where:
- \( I = \frac{e v}{2 \pi r} \) is the current due to the electron's motion, with \( e \) being the charge of the electron, \( v \) the velocity of the electron, and \( r \) the radius of the orbit.
- \( A = \pi r^2 \) is the area of the orbit.
Substitute the known values:
- \( e = 1.6 \times 10^{-19} \, \text{C} \)
- \( v = 8 \times 10^7 \, \text{m/s} \)
- \( r = 0.5 \, \text{m} \)
The current \( I \) is:
\[
I = \frac{1.6 \times 10^{-19} \times 8 \times 10^7}{2 \pi \times 0.5}
\]
\[
I = \frac{1.28 \times 10^{-11}}{3.1416 \times 0.5}
\]
\[
I = 8.16 \times 10^{-12} \, \text{A}
\]
Now, the magnetic moment is:
\[
\mu = I \times A = 8.16 \times 10^{-12} \times \pi \times (0.5)^2
\]
\[
\mu = 8.16 \times 10^{-12} \times 0.7854
\]
\[
\mu = 3.2 \times 10^{-12} \, \text{Am}^2
\]
Thus, the magnetic moment is \( 3.2 \times 10^{-12} \, \text{Am}^2 \).
Hence, the correct answer is (A) \( 3.2 \times 10^{-12} \, \text{Am}^2 \).