$\frac{qva}{8}$
Step 1: The magnetic moment of a charged particle moving in a circular path is given by: \[ \mu = I A \] where $I$ is the current and $A$ is the area of the circular path.
Step 2: The current $I$ is given by: \[ I = \frac{q}{T} \] where $T$ is the time period of the circular motion. The time period is: \[ T = \frac{2\pi a}{v} \] Step 3: Substituting $T$: \[ I = \frac{q}{2\pi a / v} = \frac{q v}{2\pi a} \]
Step 4: The area of the circular path is: \[ A = \pi a^2 \]
Step 5: Compute the magnetic moment: \[ \mu = \left(\frac{q v}{2\pi a}\right) (\pi a^2) \] \[ = \frac{q v a}{2} \]
Step 6: Therefore, the correct answer is (C).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.