Step 1: The magnetic force on a moving charge is given by: \[ \vec{F} = q (\vec{v} \times \vec{B}) \]
Step 2: Given: \[ q = 3 \times 10^{-6} C, \quad \vec{v} = (10^5 \hat{i} + 10^5 \hat{j}) { m/s}, \quad \vec{B} = 5 \hat{j} { T} \]
Step 3: Compute the cross product:
Step 4: Expanding the determinant: \[ \vec{v} \times \vec{B} = (10^5 \times 0 - 10^5 \times 0) \hat{i} - (10^5 \times 0 - 5 \times 10^5) \hat{j} + (10^5 \times 5 - 10^5 \times 0) \hat{k} \] \[ = 0 \hat{i} + 5 \times 10^5 \hat{j} + 5 \times 10^5 \hat{k} \] \[ = 5 \times 10^5 \hat{k} \]
Step 5: Compute force: \[ \vec{F} = (3 \times 10^{-6}) (5 \times 10^5 \hat{k}) \] \[ = 1.5 \hat{k} { N} \]
Step 6: Since $\hat{k}$ represents the $+z$ direction, the force is $1.5$ N in the $+z$ direction.
Step 7: Therefore, the correct answer is (E).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.