Magnetic field on axis of circular loop: $B_{axis} = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}}$.
Magnetic field at center of circular loop: $B_{center} = \frac{\mu_0 I}{2R}$.
The ratio is $\frac{B_{center}}{B_{axis}} = \frac{(R^2+x^2)^{3/2}}{R^3} = (1 + (x/R)^2)^{3/2}$.
For calculations involving ratios of lengths (like $x/R$), units can be kept consistent (e.g., all cm) as they will cancel.
Recognize Pythagorean triples if they appear (e.g., $R=6, x=8 \implies \sqrt{R^2+x^2} = \sqrt{36+64} = \sqrt{100} = 10$).