\[ B_{\text{center}} = \frac{\mu_0 I}{2R} \]
The magnetic field at a point on the axis of a current-carrying circular coil is:
\[ B_x = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} \]
We are told:
\[ B_{\text{center}} = 64 \cdot B_x \] Substituting both expressions: \[ \frac{\mu_0 I}{2R} = 64 \cdot \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} \]
Cancel \( \frac{\mu_0 I}{2} \) on both sides:
\[ \frac{1}{R} = 64 \cdot \frac{R^2}{(R^2 + x^2)^{3/2}} \Rightarrow \frac{1}{R} = \frac{64R^2}{(R^2 + x^2)^{3/2}} \]
\[ (R^2 + x^2)^{3/2} = 64R^3 \Rightarrow R^2 + x^2 = (64R^3)^{2/3} = 16R^2 \Rightarrow x^2 = 15R^2 \Rightarrow x = R\sqrt{15} \]
The value of \( x \) is \( \boxed{R\sqrt{15}} \), so the correct answer is (D).
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____.