According to the circuit,
Y = (A′ + B′)′
⇒ Y = AB
⇒ AND gate
Find output voltage in the given circuit.
Consider the following molecules:
The order of rate of hydrolysis is:
Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
An LCR circuit, also known as a resonant circuit, or an RLC circuit, is an electrical circuit consist of an inductor (L), capacitor (C) and resistor (R) connected in series or parallel.
When a constant voltage source is connected across a resistor a current is induced in it. This current has a unique direction and flows from the negative to positive terminal. Magnitude of current remains constant.
Alternating current is the current if the direction of current through this resistor changes periodically. An AC generator or AC dynamo can be used as AC voltage source.