The locus of \(z\) satisfying the inequality
\[ \left|\frac{z+2i}{2z+i}\right|<1,\; \text{where } z=x+iy, \] is
For inequalities like \(\left|\frac{z-a}{z-b}\right|<1\), convert to \(|z-a|<|z-b|\) and square to remove modulus.
Step 1: Use modulus inequality property.
\[ \left|\frac{z+2i}{2z+i}\right|<1 \Rightarrow |z+2i|<|2z+i| \]
Step 2: Substitute \(z=x+iy\).
\[ z+2i=x+i(y+2) \Rightarrow |z+2i|^2=x^2+(y+2)^2 \]
\[ 2z+i=2x+i(2y+1) \Rightarrow |2z+i|^2=(2x)^2+(2y+1)^2 \]
Step 3: Square both sides.
\[ x^2+(y+2)^2<4x^2+(2y+1)^2 \]
Step 4: Expand and simplify.
Left:
\[ x^2+y^2+4y+4 \]
Right:
\[ 4x^2+4y^2+4y+1 \]
Now subtract left from right:
\[ 0<3x^2+3y^2-3 \Rightarrow x^2+y^2>1 \]
Final Answer:
\[ \boxed{x^2+y^2>1} \]
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to