If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
Read the following text carefully:
Union Food and Consumer Affairs Minister said that the Central Government has taken many proactive steps in the past few years to control retail prices of food items. He said that the government aims to keep inflation under control without compromising the country’s economic growth. Retail inflation inched up to a three-month high of 5.55% in November 2023 driven by higher food prices. Inflation has been declining since August 2023, when it touched 6.83%. 140 new price monitoring centres had been set up by the Central Government to keep a close watch on wholesale and retail prices of essential commodities. The Government has banned the export of many food items like wheat, broken rice, non-basmati white rice, onions etc. It has also reduced import duties on edible oils and pulses to boost domestic supply and control price rise. On the basis of the given text and common understanding,
answer the following questions:
The rate of change of quantities can be expressed in the form of derivatives. Rate of change of one quantity with respect to another is one of the major applications of derivatives. The rate of change of a function with respect to another quantity can also be done using chain rule.
If some other quantity ‘y’ causes some change in a quantity of certain ‘x’, in view of the fact that an equation of the form y = f(x) gets always satisfied, i.e, ‘y’ is a function of ‘x’ then the rate of change of ‘y’ related to ‘x’ is to be given by
This is also called the Average Rate of Change.
If the rate of change of a function is to be defined at a specific point i.e. a specific value of ‘x’, it is known as the Instantaneous Rate of Change of the function at that point. From the definition of the derivative of a function at a point, we have
From this, it is to be concluded that the instantaneous Rate of Change of the function is represented by the derivative of a function. From the rate of change formula, it represents the case when Δx → 0. Thus, the rate of change of ‘y’ with respect to ‘x’ at x = x0 = (dy/dx)x = x0