Let one part be \(x\) then the other part will be \(84-x\).
Let the product be \( P(x) \). We can define the function as \( P(x) = x^2(84-x) \).
\[ f(x) = \mathbf{84x^2 - x^3} \]
\[ \therefore f'(x) = 168x - 3x^2 \]
For extreme values \( f'(x)=0 \).
\[ 168x - 3x^2 = 0 \]
\[ \therefore 3x(56-x) = 0 \]
\[ \therefore x = \mathbf{0} \text{ OR } x = \mathbf{56} \]
Now, \( f''(x) = 168 - 6x \).
If \( x=0, f''(0) = 168 - 6(0) = 168>0 \).
\(\therefore\) function attains minimum at \(x=0\).
If \( x=56, f''(56) = \mathbf{168 - 336 = -168}<0 \).
\(\therefore\) function attains maximum at \(x=56\).
Two parts of 84 are \(\mathbf{56}\) and \(\mathbf{28}\).