Question:

The length of the shortest distance between the lines $\vec{r}=3\hat{i}+5\hat{j}+7\hat{k}+\lambda(\hat{i}-2\hat{j}+\hat{k})$ and $\vec{r} = -\hat{i}-\hat{j}-\hat{k}+\mu (7\hat{i}-6\hat{j}+\hat{k})$ is

Updated On: Jun 17, 2022
  • 83 units
  • $\sqrt{6}$ units
  • $\sqrt{3}$ units
  • $2\sqrt{29}$ units
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Shortest distance PQ = $\bigg| \frac{(\vec{b_1} \times \vec{b_2} ) \ . \ (\vec{a_2} - \vec{a_1})}{|(\vec{b_1} \times \vec{b_2})|} \bigg|$
Now, $\vec{a_2} \ - \ \vec{a_1} \ = \ -\hat{i}-\hat{j}-\hat{k}-3\hat{i}-5\hat{j}-7\hat{k}$
$\Rightarrow \ \ \ \vec{a_2} - \vec{a_1} \ = \ -4\hat{i}-6\hat{j}-8\hat{k}$


And $\vec{b_1} \ \times \ \vec{b_2} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 1 \\
7 & -6 & 1 \end{vmatrix}$
$\Rightarrow \ \ \vec{b_1} \times \vec{b_2} = \hat{i} (-2+6)-\hat{j}(1-7)+\hat{k}(-6+14)$
$\Rightarrow \ \ \vec{b_1} \times \vec{b_2} \ = \ 4\hat{i}+6\hat{j}+8\hat{k}$
$\therefore $Shortest distance
$PQ= \bigg| \frac{(4\hat{i} + 6\hat{j} +8 \hat{k}) \ . \ (-4\hat{i}-6\hat{j}-8\hat{k})}{\sqrt{16+36+64}}\bigg|$
$\Rightarrow \ \ PQ \ = \ \bigg| \frac{-16-36-64}{\sqrt{116}} \bigg|$
$=|\frac{-116}{\sqrt{116}}| \ =\sqrt{116} \ = 2\sqrt{29}$
$\therefore \ \ PQ=2\sqrt{29} \ units$
Was this answer helpful?
0
0

Concepts Used:

Equation of a Line in Space

In a plane, the equation of a line is given by the popular equation y = m x + C. Let's look at how the equation of a line is written in vector form and Cartesian form.

Vector Equation

Consider a line that passes through a given point, say ‘A’, and the line is parallel to a given vector '\(\vec{b}\)‘. Here, the line ’l' is given to pass through ‘A’, whose position vector is given by '\(\vec{a}\)‘.  Now, consider another arbitrary point ’P' on the given line, where the position vector of 'P' is given by '\(\vec{r}\)'.

\(\vec{AP}\)=𝜆\(\vec{b}\)

Also, we can write vector AP in the following manner:

\(\vec{AP}\)=\(\vec{OP}\)\(\vec{OA}\)

𝜆\(\vec{b}\) =\(\vec{r}\)\(\vec{a}\)

\(\vec{a}\)=\(\vec{a}\)+𝜆\(\vec{b}\)

\(\vec{b}\)=𝑏1\(\hat{i}\)+𝑏2\(\hat{j}\) +𝑏3\(\hat{k}\)