Step 1: Convert the Given Equation to Standard Form
The given equation is:
\[
16x^2 + 25y^2 = 400.
\]
Dividing throughout by 400:
\[
\frac{16x^2}{400} + \frac{25y^2}{400} = 1.
\]
\[
\frac{x^2}{25} + \frac{y^2}{16} = 1.
\]
This represents the standard form of an ellipse:
\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,
\]
where:
\[
a^2 = 25 \Rightarrow a = 5, \quad b^2 = 16 \Rightarrow b = 4.
\]
Step 2: Formula for Length of the Latus Rectum
The formula for the length of the latus rectum of an ellipse is:
\[
\frac{2b^2}{a}.
\]
Substituting the values:
\[
\frac{2(16)}{5} = \frac{32}{5}.
\]
Step 3: Conclusion
Thus, the correct answer is:
\[
\mathbf{\frac{32}{5}}.
\]