\( A_{square} = s \times s = s^2 \)
\( s_{new} = s + 0.15s = 1.15s \)
\( b_{new} = s - 0.15s = 0.85s \)
\( A_{rectangle} = s_{new} \times b_{new} = (1.15s) \times (0.85s) = 1.15 \times 0.85 \times s^2 \)
\( 1.15 \times 0.85 = 0.9775 \)
\( A_{rectangle} = 0.9775s^2 \)
\( \text{Percentage Change} = \left(\frac{A_{rectangle} - A_{square}}{A_{square}}\right) \times 100 = \left(\frac{0.9775s^2 - s^2}{s^2}\right) \times 100 \)
\( = (0.9775 - 1) \times 100 = -2.25\% \)
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$