Concept:
To find the highest power of a prime number \(p\) dividing \(n!\), we use
Legendre’s formula:
\[
\text{Power of } p \text{ in } n! = \left\lfloor \frac{n}{p} \right\rfloor
+ \left\lfloor \frac{n}{p^{2}} \right\rfloor
+ \left\lfloor \frac{n}{p^{3}} \right\rfloor + \cdots
\]
Here, \(p = 7\) and \(n = 101\).
Step 1: Apply Legendre’s formula
\[
\left\lfloor \frac{101}{7} \right\rfloor = 14
\]
\[
\left\lfloor \frac{101}{7^{2}} \right\rfloor
= \left\lfloor \frac{101}{49} \right\rfloor = 2
\]
\[
\left\lfloor \frac{101}{7^{3}} \right\rfloor
= \left\lfloor \frac{101}{343} \right\rfloor = 0
\]
Step 2: Add all contributions
\[
n = 14 + 2 + 0 = 16
\]
Final Answer:
The largest power of \(7\) that divides \(101!\) is
\[
\boxed{7^{16}}
\]
Hence,
\[
\boxed{n = 16}
\]