$f(x)=2 x^{3}-3 x^{2}-12 x+5$ and $-2 \leq x \leq 4$
To find maxima, differentiate $f ( x )$ & put it equal to $o$
$f(x)=6 x^{2}-6 x-12=0$
$\Rightarrow x^{2}-x-2=0$
$\Rightarrow x^{2}-2 x+x-2=0$
$\Rightarrow x(x-2)+1(x-2)=0$
$(x-2)(x+1)=0$
$x=2,-1$
$f''(x)=12 x-6$
$f(2)=18 > 0$
$\therefore$ At $x=2, $ value of $f(x)$ is minimum
$f(-1)=-18 < 0$
$\therefore x =-1$ can be point of maxima
$\therefore$ We check value of $f(x)$ at $x=-2,2,-1,4$
$f (-2)=-16-12+24+5=1$
$f(2)=16-12-24+5=-15$
$f (-1)=-2-3+12+5=12$
$f(4)=128-48-48+5=37$
$\therefore$ At $x =4, f ( x )$ is maximum.