The Lagrangian of a simple pendulum, consisting of a bob of mass \( m \) suspended by a string of length \( l \), executing oscillations of amplitude \( \theta \) about the equilibrium position is given by:
Show Hint
The Lagrangian approach simplifies equations of motion for constrained systems.
\( \frac{1}{2} m l^2 \dot{\theta}^2 - mg l \cos\theta \)
\( \frac{1}{2} m l^2 \dot{\theta}^2 - mg l (1 + \cos\theta) \)
\( \frac{1}{2} m l^2 \dot{\theta}^2 - mg l (1 - \cos\theta) \)
Hide Solution
Verified By Collegedunia
The Correct Option isD
Solution and Explanation
The Lagrangian is given by:
\[
L = T - V
\]
where,
\[
T = \frac{1}{2} m l^2 \dot{\theta}^2
\]
\[
V = mg l (1 - \cos\theta)
\]
Thus,
\[
L = \frac{1}{2} m l^2 \dot{\theta}^2 - mg l (1 - \cos\theta)
\]