The photoelectric equation is given by:
\[
h f = h f_0 + K_{\text{max}}
\]
where:
- \( h \) is Planck’s constant (\( 6.6 \times 10^{-34} \) Js),
- \( f \) is the incident frequency (\( 1.0 \times 10^{15} \) Hz),
- \( f_0 \) is the threshold frequency,
- \( K_{\text{max}} \) is the maximum kinetic energy of emitted electrons (\( 2 \times 10^{-19} \) J).
1. Rearrange the equation for \( f_0 \):
\[
f_0 = \frac{h f - K_{\text{max}}}{h}
\]
2. Substituting the values:
\[
f_0 = \frac{(6.6 \times 10^{-34} \times 1.0 \times 10^{15}) - (2 \times 10^{-19})}{6.6 \times 10^{-34}}
\]
\[
= \frac{6.6 \times 10^{-19} - 2 \times 10^{-19}}{6.6 \times 10^{-34}}
\]
\[
= \frac{4.6 \times 10^{-19}}{6.6 \times 10^{-34}}
\]
\[
= 6.97 \times 10^{14} \text{ Hz}
\]
Thus, the correct answer is \(\boxed{6.97 \times 10^{14} \text{ Hz}}\).