Question:

The inverse of the matrix $\begin{bmatrix}2&5&0\\ 0&1&1\\ -1&0&3\end{bmatrix} $ is

Updated On: Apr 8, 2024
  • $\begin{bmatrix}3&-15&5\\ -1&6&-2\\ 1&-5&2\end{bmatrix}$
  • $\begin{bmatrix}3&-1&1\\ -15&6&-5\\ 5&-2&2\end{bmatrix}$
  • $\begin{bmatrix}3&-15&5\\ -1&6&-2\\ 1&-5&-2\end{bmatrix}$
  • $\begin{bmatrix}3&-5&5\\ -1&-6&-2\\ 1&-5&2\end{bmatrix}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

$Let A=\left[\begin{matrix}2&5&0\\ 0&1&1\\ -1&0&3\end{matrix}\right]$
$\left|A\right|=2\left(3-0\right)-5\left(0+1\right)$
$ = 6 - 5 = 1$
$\therefore\, \left|A\right|=1$
$adj \, A=\left[\begin{matrix}3&-1&1\\ -15&6&-5\\ 5&-2&2\end{matrix}\right]^{T}=\left[\begin{matrix}3&-15&5\\ -1&6&-2\\ 1&-5&2\end{matrix}\right]$
$A^{-1}=\frac{adj\, A}{\left|A\right|}=\left[\begin{matrix}3&-15&5\\ -1&6&-2\\ 1&-5&2\end{matrix}\right]$
Was this answer helpful?
0
0

Concepts Used:

Invertible matrices

A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In  is an identity matrix of order n × n.

For example,

It can be observed that the determinant of the following matrices is non-zero.