$\log_e y$
$y$
To find the integrating factor of the differential equation \((y \log_e y) \frac{dx}{dy} + x = 2 \log_e y\), we start by comparing it to the standard form of a linear differential equation \(\frac{dx}{dy} + P(y)x = Q(y)\).
Rewriting the given equation, we have:
\((y \log_e y) \frac{dx}{dy} + x = 2 \log_e y\)
\(\Rightarrow \frac{dx}{dy} + \frac{x}{y \log_e y} = \frac{2}{y}\)
Here, \(\frac{1}{y \log_e y}\) is \(P(y)\) and \(\frac{2}{y}\) is \(Q(y)\).
The integrating factor \( \mu(y) \) is given by:
\(\mu(y) = e^{\int P(y) \, dy} = e^{\int \frac{1}{y \log_e y} \, dy}\)
To solve the integral \(\int \frac{1}{y \log_e y} \, dy\), let \(u = \log_e y\), which gives \(du = \frac{1}{y} dy\).
The integral becomes:
\(\int \frac{1}{y \log_e y} \, dy = \int \frac{1}{u} \, du = \log_e|u| + C\)
Since \(u = \log_e y\), substitute back to get:
\(\log_e|\log_e y|\)
Thus, the integrating factor is:
\(\mu(y) = e^{\log_e(\log_e y)} = \log_e y\)
The correct answer is \(\log_e y\).
The given differential equation is:
\[(y~\log_{e}y)\frac{dx}{dy}+x=2~\log_{e}y.\]
Rewriting it:
\[\frac{dx}{dy}+\frac{x}{y~\log_{e}y}=\frac{2}{y}.\]
This is a linear differential equation of the form:
\[\frac{dx}{dy}+P(y)x=Q(y),\] where:
\[P(y)=\frac{1}{y~\log_{e}y},~~~Q(y)=\frac{2}{y}.\]
The integrating factor (IF) is given by:
\[IF=e^{\int P(y)dy}.\]
Substitute \(P(y)=\frac{1}{y~\log_{e}y}\):
\[\int P(y)dy=\int\frac{1}{y~\log_{e}y}dy.\]
Let \(u=\log_{e}y\) so \(du=\frac{1}{y}dy\). The integral becomes:
\[\int\frac{1}{y~\log_{e}y}dy=\int\frac{1}{u}du=\log_{e}u+C.\]
Substituting back \(u=\log_{e}y\):
\[\int P(y)dy=\log_{e}(\log_{e}y).\]
Thus, the integrating factor is:
\[IF=e^{\log_{e}(\log_{e}y)}=\log_{e}y.\]
Final Answer:
\[\log_{e}y.\]