$\log_e y$
$y$
The given differential equation is:
\[(y~\log_{e}y)\frac{dx}{dy}+x=2~\log_{e}y.\]
Rewriting it:
\[\frac{dx}{dy}+\frac{x}{y~\log_{e}y}=\frac{2}{y}.\]
This is a linear differential equation of the form:
\[\frac{dx}{dy}+P(y)x=Q(y),\] where:
\[P(y)=\frac{1}{y~\log_{e}y},~~~Q(y)=\frac{2}{y}.\]
The integrating factor (IF) is given by:
\[IF=e^{\int P(y)dy}.\]
Substitute \(P(y)=\frac{1}{y~\log_{e}y}\):
\[\int P(y)dy=\int\frac{1}{y~\log_{e}y}dy.\]
Let \(u=\log_{e}y\) so \(du=\frac{1}{y}dy\). The integral becomes:
\[\int\frac{1}{y~\log_{e}y}dy=\int\frac{1}{u}du=\log_{e}u+C.\]
Substituting back \(u=\log_{e}y\):
\[\int P(y)dy=\log_{e}(\log_{e}y).\]
Thus, the integrating factor is:
\[IF=e^{\log_{e}(\log_{e}y)}=\log_{e}y.\]
Final Answer:
\[\log_{e}y.\]
List-I (Words) | List-II (Definitions) |
(A) Theocracy | (I) One who keeps drugs for sale and puts up prescriptions |
(B) Megalomania | (II) One who collects and studies objects or artistic works from the distant past |
(C) Apothecary | (III) A government by divine guidance or religious leaders |
(D) Antiquarian | (IV) A morbid delusion of one’s power, importance or godliness |