>
Exams
>
Mathematics
>
Maxima and Minima
>
the integrating factor of the differential equatio
Question:
The integrating factor of the differential equation
2
y
d
x
d
y
+
x
=
5
y
2
is,
(
y
≠
0
)
:
MHT CET
Updated On:
Jun 23, 2024
(A)
y
(B)
y
2
(C)
y
(D)
1
y
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Explanation:
Given,
2
y
d
x
d
y
+
x
=
5
y
2
…
(
i
)
Equation
(
i
)
can be simplified as,
d
x
d
y
+
x
2
y
=
5
2
y
On comparing eqn
(
i
)
with standard eqn,
d
x
d
y
+
P
x
=
Q
,We get
P
=
1
2
y
and
Q
=
5
2
y
Therefore,
I
F
=
e
∫
P
d
y
=
e
∫
1
2
y
d
y
⇒
I
F
=
e
1
2
log
y
=
e
log
y
1
2
⇒
I
F
=
y
(
∵
e
a
log
x
=
x
a
)
Hence, the correct option is (A).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Maxima and Minima
The slope of the curve
\( y = -x^3 + 3x^2 + 8x - 20 \)
is maximum at:
CBSE CLASS XII - 2025
Mathematics
Maxima and Minima
View Solution
It is given that at x = 1, the function \(f(x) = x^4 - 62x^2 + ax + 9\), attains its maximum value in the interval \([0, 2]\). Then, the value of 'a' is
CUET (PG) - 2025
Statistics
Maxima and Minima
View Solution
Function, \(f(x) = -|x-1|+5, \forall x \in R\) attains maximum value at x =
CUET (PG) - 2025
Statistics
Maxima and Minima
View Solution
The maximum values of the function
\(\sin(x)+\cos(2x)\), are
CUET (PG) - 2025
Statistics
Maxima and Minima
View Solution
The absolute maximum value of $y = x^{3} - 3x + 2$, for $0 \leq x \leq 2$, is:
CUET (UG) - 2025
Mathematics
Maxima and Minima
View Solution
View More Questions
Questions Asked in MHT CET exam
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions