\begin{enumerate}
\item Step 1: Rewrite the given integral:
The integral is:
\[
I = \int_{\pi/6}^{\pi/3} \sec^{2/3}(x) \csc^{4/3}(x) \, dx.
\]
\item Step 2: Use substitution:
Let:
\[
t = \tan(x), \quad \text{so that} \quad dt = \sec^2(x) \, dx.
\]
Using the trigonometric identities:
\[
\sec(x) = \sqrt{1 + t^2}, \quad \csc(x) = \frac{1}{\sqrt{t^2}}.
\]
The limits of integration change as follows:
\[
x = \pi/6 \implies t = \tan(\pi/6) = \frac{1}{\sqrt{3}}, \quad
x = \pi/3 \implies t = \tan(\pi/3) = \sqrt{3}.
\]
\item Step 3: Substitute into the integral:
Substituting \( \sec(x) \) and \( \csc(x) \) into the integral:
\[
I = \int_{1/\sqrt{3}}^{\sqrt{3}} \left( (1 + t^2)^{1/3} \cdot t^{-4/3} \right) t^2 \, \frac{dt}{(1 + t^2)}.
\]
Simplify the expression:
\[
I = \int_{1/\sqrt{3}}^{\sqrt{3}} \frac{(1 + t^2)^{1/3}}{(1 + t^2)} \cdot t^{-4/3} \cdot t^2 \, dt.
\]
Combine terms:
\[
I = \int_{1/\sqrt{3}}^{\sqrt{3}} \frac{t^{2 - 4/3}}{(1 + t^2)^{2/3}} \, dt.
\]
Simplify the powers:
\[
I = \int_{1/\sqrt{3}}^{\sqrt{3}} \frac{t^{2/3}}{(1 + t^2)^{2/3}} \, dt.
\]
\item Step 4: Use a new substitution:
Let:
\[
u = t^{2/3}, \quad \text{so that} \quad t = u^{3/2}, \quad dt = \frac{3}{2} u^{1/2} \, du.
\]
The limits of integration change:
\[
t = \frac{1}{\sqrt{3}} \implies u = \left( \frac{1}{\sqrt{3}} \right)^{2/3} = 3^{-1/3}, \quad
t = \sqrt{3} \implies u = (\sqrt{3})^{2/3} = 3^{1/3}.
\]
Substitute \( t \) into the integral:
\[
I = \int_{3^{-1/3}}^{3^{1/3}} \frac{u}{(1 + u^{3})^{2/3}} \cdot \frac{3}{2} u^{1/2} \, du.
\]
Combine terms:
\[
I = \frac{3}{2} \int_{3^{-1/3}}^{3^{1/3}} \frac{u^{3/2}}{(1 + u^3)^{2/3}} \, du.
\]
\item Step 5: Simplify the integral:
Let:
\[
v = u^3, \quad \text{so that} \quad dv = 3u^2 \, du.
\]
The limits change again:
\[
u = 3^{-1/3} \implies v = (3^{-1/3})^3 = \frac{1}{3}, \quad
u = 3^{1/3} \implies v = (3^{1/3})^3 = 3.
\]
Substitute \( u \) into the integral:
\[
I = \frac{1}{2} \int_{1/3}^{3} v^{-1/3} \, dv.
\]
\item Step 6: Solve the simplified integral:
The integral of \( v^{-1/3} \) is:
\[
\int v^{-1/3} \, dv = \frac{v^{2/3}}{2/3} = \frac{3}{2} v^{2/3}.
\]
Evaluate the definite integral:
\[
I = \frac{1}{2} \left[ \frac{3}{2} v^{2/3} \right]_{1/3}^{3}.
\]
Substitute the limits:
\[
I = \frac{1}{2} \cdot \frac{3}{2} \left( 3^{2/3} - \left(\frac{1}{3}\right)^{2/3} \right).
\]
Simplify:
\[
I = \frac{3}{4} \left( 3^{2/3} - 3^{-2/3} \right).
\]
Rewrite using exponents:
\[
I = \frac{3}{4} \left( 3^{2/3} - \frac{1}{3^{2/3}} \right).
\]
Factorize:
\[
I = 3^{7/6} - 3^{5/6}.
\]
\item Final Answer:
\[
\boxed{3^{7/6} - 3^{5/6}}
\]
\end{enumerate}