We are given the integral: \[ I = \int e^x \left( \frac{x + 5}{(x + 6)^2} \right) dx \]
Step 1: Simplification of the Integral Expression
We can simplify the expression by splitting the fraction into simpler terms: \[ \frac{x + 5}{(x + 6)^2} = \frac{(x + 6) - 1}{(x + 6)^2} = \frac{1}{x + 6} - \frac{1}{(x + 6)^2} \] Thus, the integral becomes: \[ I = \int e^x \left( \frac{1}{x + 6} - \frac{1}{(x + 6)^2} \right) dx \]
Step 2: Splitting the Integral
Now, we split the integral into two parts: \[ I = \int e^x \cdot \frac{1}{x + 6} \, dx - \int e^x \cdot \frac{1}{(x + 6)^2} \, dx \] We now deal with these two integrals separately.
Step 3: Solving the First Integral
For the first part, \( \int e^x \cdot \frac{1}{x + 6} \, dx \), we can use a substitution: Let \( u = x + 6 \), so \( du = dx \). The integral becomes: \[ \int e^{u - 6} \cdot \frac{1}{u} \, du = e^{-6} \int \frac{e^u}{u} \, du \] This integral is a standard form and the result is: \[ e^{-6} \cdot \ln |u| + C_1 = e^{-6} \ln |x + 6| + C_1 \]
Step 4: Solving the Second Integral
For the second part, \( \int e^x \cdot \frac{1}{(x + 6)^2} \, dx \), we can also use the substitution \( u = x + 6 \), so \( du = dx \): \[ \int e^{u - 6} \cdot \frac{1}{u^2} \, du = e^{-6} \int \frac{e^u}{u^2} \, du \] This integral can be solved using integration by parts or referring to a table of integrals. The result of this integral is: \[ - e^{-6} \cdot \frac{1}{u} = - e^{-6} \cdot \frac{1}{x + 6} \]
Step 5: Combining the Results
Finally, combining both integrals, we get: \[ I = e^{-6} \ln |x + 6| + C_1 - e^{-6} \cdot \frac{1}{x + 6} + C_2 \] This can be simplified as: \[ I = - \frac{e^x}{x + 6} + C \] Thus, the correct answer is \( - \frac{e^x}{x + 6} \).
The integral $ \int_0^1 \frac{1}{2 + \sqrt{2e}} \, dx $ is:
If a random variable X has the following probability distribution values:
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
P(X) | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 |
Then P(X ≥ 6) has the value: