We are given the integral: \[ \int e^x \left( \frac{x + 5}{(x + 6)^2} \right) dx \] To solve this, we can use substitution. Let: \[ u = x + 6 \quad \Rightarrow \quad du = dx \] Thus, the integral becomes: \[ \int e^{u - 6} \left( \frac{u - 1}{u^2} \right) du \] Simplifying, we get: \[ e^{-6} \int e^u \left( \frac{u - 1}{u^2} \right) du \] By applying the method of integration by parts and solving, we end up with the result: \[ - \frac{e^x}{x + 6} \]
Thus, the correct answer is \( - \frac{e^x}{x + 6} \).
Evaluate: \[ \int_1^5 \left( |x-2| + |x-4| \right) \, dx \]