Step 1: Formula for first-order rate constant.
\[ k = \frac{2.303}{t} \log \frac{[R]_0}{[R]} \] where, \([R]_0 = 1.24 \times 10^{-2} \, mol L^{-1}\) (initial concentration)
\([R] = 0.20 \times 10^{-2} \, mol L^{-1}\) (concentration after 60 min)
\(t = 60 \, min = 60 \times 60 = 3600 \, s\)
Step 2: Substitution.
\[ k = \frac{2.303}{3600} \log \frac{1.24 \times 10^{-2}}{0.20 \times 10^{-2}} \] \[ k = \frac{2.303}{3600} \log (6.2) \] \[ \log (6.2) \approx 0.792 \] \[ k = \frac{2.303 \times 0.792}{3600} \] \[ k \approx 5.06 \times 10^{-4} \, s^{-1} \]
Conclusion:
The rate constant of the reaction at 318 K is: \[ \boxed{5.06 \times 10^{-4} \, s^{-1}} \]