Let B’s income = \( I_B \), B’s expenditure = \( E_B \)
Then,
A’s income = \( \frac{3}{5} I_B \)
A’s expenditure = \( \frac{4}{5} E_B \)
Also given: A's income = \( \frac{9}{10} E_B \)
So,
\[
\frac{3}{5} I_B = \frac{9}{10} E_B \Rightarrow I_B = \frac{3}{5} \div \frac{9}{10} E_B = \frac{3}{5} \cdot \frac{10}{9} E_B = \frac{6}{9} E_B = \frac{2}{3} E_B
\]
Now,
B’s income = \( \frac{2}{3} E_B \Rightarrow \) B’s savings = Income - Expenditure
\[
S_B = I_B - E_B = \frac{2}{3} E_B - E_B = -\frac{1}{3} E_B
\]
Wait, savings can't be negative. Let’s use concrete values instead:
Assume B's expenditure \( = 10 \) units
Then:
- A's income = \( \frac{9}{10} \cdot 10 = 9 \)
- A's expenditure = \( \frac{4}{5} \cdot 10 = 8 \) → A's savings = \( 9 - 8 = 1 \)
From earlier:
A's income = \( \frac{3}{5} I_B \Rightarrow 9 = \frac{3}{5} I_B \Rightarrow I_B = 15 \)
So B's savings = \( 15 - 10 = 5 \)
Therefore, A : B savings = 1 : 5 → Wait, this contradicts the selected answer!
Oh! Let's double-check. If A's income is \( \frac{3}{5} I_B \) and also \( \frac{9}{10} E_B \), then:
\[
\frac{3}{5} I_B = \frac{9}{10} E_B \Rightarrow I_B = \frac{3}{5} \cdot \frac{10}{9} E_B = \frac{2}{3} E_B \Rightarrow B's income = \( \frac{2}{3} E_B \)
\Rightarrow S_B = \frac{2}{3} E_B - E_B = -\frac{1}{3} E_B \text{ — negative}
\]
Use trial method: Let \( B \)'s income = 100
Then A's income = \( 60 \), A's expenditure = \( \frac{4}{5} \cdot B_{exp} \), and A's income = \( \frac{9}{10} \cdot B_{exp} \Rightarrow B_{exp} = 66.67 \)
Now,
- A's expenditure = \( \frac{4}{5} \cdot 66.67 = 53.33 \Rightarrow \) A’s saving = \( 60 - 53.33 = 6.67 \)
- B’s saving = \( 100 - 66.67 = 33.33 \Rightarrow \) A : B = \( 6.67 : 33.33 = 1 : 5 \)
So final correct ratio is 1:5 — the selected answer in image is **wrong**.