Step 1: Given parameters
- Angle of projection: \( 45^\circ \).
- Horizontal range: \( R = 50 \) m.
- Horizontal displacement: \( x = 20 \) m.
The equation for the trajectory of a projectile is:
\[
y = x \tan \theta - \frac{g x^2}{2 u^2 \cos^2 \theta}.
\]
For \( \theta = 45^\circ \), \( \tan 45^\circ = 1 \) and \( \cos 45^\circ = \frac{1}{\sqrt{2}} \), so the equation simplifies to:
\[
y = x - \frac{g x^2}{2 u^2 \cos^2 45^\circ}.
\]
Since the horizontal range is given by:
\[
R = \frac{u^2 \sin 2\theta}{g},
\]
for \( \theta = 45^\circ \), we get:
\[
50 = \frac{u^2}{g}.
\]
Thus,
\[
u^2 = 50g.
\]
Step 2: Calculating the height
Substituting \( u^2 = 50g \) and \( \cos^2 45^\circ = \frac{1}{2} \):
\[
y = x - \frac{g x^2}{2 (50g) \times \frac{1}{2}}.
\]
\[
y = x - \frac{x^2}{50}.
\]
Substituting \( x = 20 \):
\[
y = 20 - \frac{20^2}{50}.
\]
\[
y = 20 - \frac{400}{50}.
\]
\[
y = 20 - 8 = 12 { m}.
\]
Step 3: Conclusion
Thus, the height of the projectile when the horizontal displacement is 20 m is:
\[
12 { m}.
\]