During winter, extremely cold and dry continental air masses form over Central Asia and Siberia. Normally, these winds would move southward into India, but are prevented by physical barriers.
The Himalayas rise sharply above 8000 meters, acting as a massive barrier to these cold winds. The dense air cannot easily cross this wall, and thus the mountains block or deflect it.
Due to this barrier, North India experiences mild winters instead of Siberian-like cold. The Himalayas prevent severe freezing, making agriculture (like Rabi crops) possible.
This same orographic barrier also influences the summer monsoon, helping shape India’s diverse climate.
\[ \textbf{The Himalayas block frigid continental winds, moderating India’s winter climate.} \]
Complete the following activity to prove that the sum of squares of diagonals of a rhombus is equal to the sum of the squares of the sides.
Given: PQRS is a rhombus. Diagonals PR and SQ intersect each other at point T.
To prove: PS\(^2\) + SR\(^2\) + QR\(^2\) + PQ\(^2\) = PR\(^2\) + QS\(^2\)
Activity: Diagonals of a rhombus bisect each other.
In \(\triangle\)PQS, PT is the median and in \(\triangle\)QRS, RT is the median.
\(\therefore\) by Apollonius theorem,
\[\begin{aligned} PQ^2 + PS^2 &= \boxed{\phantom{X}} + 2QT^2 \quad \dots \text{(I)} \\ QR^2 + SR^2 &= \boxed{\phantom{X}} + 2QT^2 \quad \dots \text{(II)} \\ \text{Adding (I) and (II),} \quad PQ^2 + PS^2 + QR^2 + SR^2 &= 2(PT^2 + \boxed{\phantom{X}}) + 4QT^2 \\ &= 2(PT^2 + \boxed{\phantom{X}}) + 4QT^2 \quad (\text{RT = PT}) \\ &= 4PT^2 + 4QT^2 \\ &= (\boxed{\phantom{X}})^2 + (2QT)^2 \\ \therefore \quad PQ^2 + PS^2 + QR^2 + SR^2 &= PR^2 + \boxed{\phantom{X}} \\ \end{aligned}\]