Step 1: Recall Henry’s Law
Henry’s law states that:
$$ C = \frac{P}{K_H} $$
\( C \) = Concentration (solubility) of the gas
\( P \) = Partial pressure of the gas
\( K_H \) = Henry’s law constant
Step 2: Analyze the Relationship Between \( K_H \) and Solubility
A lower \( K_H \) value corresponds to higher solubility, and a higher \( K_H \) value corresponds to lower solubility.
Step 3: Compare the \( K_H \) Values
For Gas A: \( K_H = 145 \) kbar (highest \( K_H \), least soluble).
For Gas B: \( K_H = 2 \times 10^{-5} \) kbar (lowest \( K_H \), most soluble).
For Gas C: \( K_H = 35 \) kbar (moderate \( K_H \)).
Step 4: Arrange in Decreasing Solubility
Since solubility is inversely proportional to \( K_H \), the order of solubility is:
$$ B > C > A $$
Conclusion
The correct order of solubility is: B > C > A.
List I | List II | ||
---|---|---|---|
A | Mesozoic Era | I | Lower invertebrates |
B | Proterozoic Era | II | Fish & Amphibia |
C | Cenozoic Era | III | Birds & Reptiles |
D | Paleozoic Era | IV | Mammals |