Step 1: Understand the principle of stiffness testing. Fabric stiffness (or bending rigidity) is its resistance to bending. Different methods are suited for different types of fabrics.
Step 2: Analyze the "Heart Loop Test". In this test, a strip of fabric is formed into a loop that resembles a heart shape and is hung on a stand. The length of the loop is measured. A stiffer fabric will resist bending and form a shorter, wider loop. A very flexible, non-stiff fabric will bend easily under its own weight, resulting in a long, narrow loop.
Step 3: Relate the method to the fabric type. The Cantilever test is the standard method for most fabrics. However, for fabrics that are very soft, flexible, and drapeable (i.e., "limpy"), the cantilever method is not sensitive enough because the fabric strip just drapes vertically and doesn't bend in a measurable way. The Heart Loop test is specifically designed for these very flexible and limpy fabrics because it is more sensitive to small differences in stiffness in the low range.
Conclusion: The heart loop test is especially suitable for measuring the stiffness of very flexible and limpy fabrics.
Match Fibre with Application.\[\begin{array}{|l|l|} \hline \textbf{LIST I} & \textbf{LIST II} \\ \textbf{Fibre} & \textbf{Application} \\ \hline \hline \text{A. Silk fibre} & \text{I. Fire retardant} \\ \hline \text{B. Wool fibre} & \text{II. Directional lustre} \\ \hline \text{C. Nomex fibre} & \text{III. Bulletproof} \\ \hline \text{D. Kevlar fibre} & \text{IV. Thermal insulation} \\ \hline \end{array}\]
The strength of fiber is usually measured in bundle form because there is better correlation between fiber bundle strength and \(\underline{\hspace{2cm}}\)
Match the LIST-I (Spectroscopy) with LIST-II (Application)
LIST-I | LIST-II |
---|---|
A. Visible light spectroscopy | III. Identification on the basis of color |
B. Fluorescence spectroscopy | IV. Identification on the basis of fluorophore present |
C. FTIR spectroscopy | I. Identification on the basis of absorption in infrared region |
D. Mass Spectroscopy | II. Identification on the basis of m/z ion |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Forensic Psychiatry | III. Behavioural pattern of criminal |
B. Forensic Engineering | IV. Origin of metallic fracture |
C. Forensic Odontology | I. Bite marks analysis |
D. Computer Forensics | II. Information derived from digital devices |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Calvin Goddard | II. Forensic Ballistics |
B. Karl Landsteiner | III. Blood Grouping |
C. Albert Osborn | IV. Document examination |
D. Mathieu Orfila | I. Forensic Toxicology |
Match the LIST-I (Evidence, etc.) with LIST-II (Example, Construction etc.)
LIST-I | LIST-II |
---|---|
A. Biological evidence | IV. Blood |
B. Latent print evidence | III. Fingerprints |
C. Trace evidence | II. Soil |
D. Digital evidence | I. Cell phone records |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Ridges | III. The raised portion of the friction skin of the fingers |
B. Type Lines | I. Two most inner ridges which start parallel, diverge and surround or tend to surround the pattern area |
C. Delta | IV. The ridge characteristics nearest to the point of divergence of type lines |
D. Enclosure | II. A single ridge bifurcates and reunites to enclose some space |