Step 1: Understanding the Concept:
A series is conditionally convergent if it converges, but the series of its absolute values diverges. The given series is an alternating series of the form \( \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^p} \).
Step 2: Key Formula or Approach:
1. Check for convergence: We use the Leibniz test (Alternating Series Test). The series converges if the terms \( \frac{1}{n^p} \) are positive, decreasing, and have a limit of 0. 2. Check for absolute convergence: We examine the series of absolute values, which is \( \sum_{n=1}^{\infty} \left| (-1)^{n-1} \frac{1}{n^p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p} \). This is a p-series.
Step 3: Detailed Explanation:
Convergence of the alternating series: The terms \( a_n = \frac{1}{n^p} \) are positive for all \(n \ge 1\). Since \(p>0\), the denominator \( n^p \) increases as \(n\) increases, so the terms \( a_n \) are decreasing. The limit is \( \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n^p} = 0 \) because \(p>0\). By the Leibniz test, the alternating series converges for all \( p>0 \). Absolute convergence: The series of absolute values is the p-series \( \sum_{n=1}^{\infty} \frac{1}{n^p} \). The p-series test states that this series: - Converges if \( p>1 \). - Diverges if \( p \le 1 \). Conditional Convergence: For the original series to be conditionally convergent, it must converge but not converge absolutely. - We need the alternating series to converge, which happens for \( p>0 \). - We need the series of absolute values to diverge, which happens for \( p \le 1 \). Combining these two conditions, we need \( p>0 \) AND \( p \le 1 \). This corresponds to the interval \( (0, 1] \).
Step 4: Final Answer:
The series is conditionally convergent if p lies in the interval \( (0, 1] \).
Find the residue of \( (67 + 89 + 90 + 87) \pmod{11} \):
Match List-I with List-II and choose the correct option:
LIST-I (Infinite Series) | LIST-II (Nature of Series) |
---|---|
(A) \( 12 - 7 - 3 - 2 + 12 - 7 - 3 - 2 + \dots \) | (II) oscillatory |
(B) \( 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \) | (IV) conditionally convergent |
(C) \( \sum_{n=0}^{\infty} \left( (n^3+1)^{1/3} - n \right) \) | (I) convergent |
(D) \( \sum_{n=1}^{\infty} \frac{1}{n \left( 1 + \frac{1}{n} \right)} \) | (III) divergent |
Choose the correct answer from the options given below:
Match List-I with List-II and choose the correct option:
LIST-I (Set) | LIST-II (Supremum/Infimum) |
---|---|
(A) \( S = \{2, 3, 5, 10\} \) | (III) Sup S = 10, Inf S = 2 |
(B) \( S = (1, 2] \cup [3, 8) \) | (IV) Sup S = 8, Inf S = 1 |
(C) \( S = \{2, 2^2, 2^3, \dots, 2^n, \dots\} \) | (II) Sup S = 5, Inf S = -5 |
(D) \( S = \{x \in \mathbb{Z} : x^2 \le 25\} \) | (I) Inf S = 2 |
Choose the correct answer from the options given below:
Which of the following are correct?
A. A set \( S = \{(x, y) \mid xy \leq 1 : x, y \in \mathbb{R}\} \) is a convex set.
B. A set \( S = \{(x, y) \mid x^2 + 4y^2 \leq 12 : x, y \in \mathbb{R}\} \) is a convex set.
C. A set \( S = \{(x, y) \mid y^2 - 4x \leq 0 : x, y \in \mathbb{R}\} \) is a convex set.
D. A set \( S = \{(x, y) \mid x^2 + 4y^2 \geq 12 : x, y \in \mathbb{R}\} \) is a convex set.
If p is a prime number and a group G is of the order p2, then G is:
Match List-I with List-II and choose the correct answer:
Match List-I with List-II:
Who said this sentence –
Match List-I with List-II and choose the correct answer:
Match List-I with List-II and choose the correct answer: