Find the residue of \( (67 + 89 + 90 + 87) \pmod{11} \):
This problem involves modular arithmetic. The residue of a sum modulo \(n\) is the same as the sum of the individual residues modulo \(n\). This property allows us to simplify the calculation by working with smaller numbers.
The key property is \[ (a + b + c + d) \pmod{n} = \left( (a \pmod{n}) + (b \pmod{n}) + (c \pmod{n}) + (d \pmod{n}) \right) \pmod{n}. \] We will find the residue of each number in the sum modulo 11.
Now, add the residues: \[ 1 + 1 + 2 + 10 = 14. \] Finally, find the residue of this sum modulo 11: \[ 14 \pmod{11}: \quad 14 = 1 \times 11 + 3. \quad \text{So,} \quad 14 \equiv 3 \pmod{11}. \]
The residue is \( \boxed{3} \).
Match List-I with List-II and choose the correct option:
LIST-I (Infinite Series) | LIST-II (Nature of Series) |
---|---|
(A) \( 12 - 7 - 3 - 2 + 12 - 7 - 3 - 2 + \dots \) | (II) oscillatory |
(B) \( 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \) | (IV) conditionally convergent |
(C) \( \sum_{n=0}^{\infty} \left( (n^3+1)^{1/3} - n \right) \) | (I) convergent |
(D) \( \sum_{n=1}^{\infty} \frac{1}{n \left( 1 + \frac{1}{n} \right)} \) | (III) divergent |
Choose the correct answer from the options given below:
Match List-I with List-II and choose the correct option:
LIST-I (Set) | LIST-II (Supremum/Infimum) |
---|---|
(A) \( S = \{2, 3, 5, 10\} \) | (III) Sup S = 10, Inf S = 2 |
(B) \( S = (1, 2] \cup [3, 8) \) | (IV) Sup S = 8, Inf S = 1 |
(C) \( S = \{2, 2^2, 2^3, \dots, 2^n, \dots\} \) | (II) Sup S = 5, Inf S = -5 |
(D) \( S = \{x \in \mathbb{Z} : x^2 \le 25\} \) | (I) Inf S = 2 |
Choose the correct answer from the options given below:
Which of the following are correct?
A. A set \( S = \{(x, y) \mid xy \leq 1 : x, y \in \mathbb{R}\} \) is a convex set.
B. A set \( S = \{(x, y) \mid x^2 + 4y^2 \leq 12 : x, y \in \mathbb{R}\} \) is a convex set.
C. A set \( S = \{(x, y) \mid y^2 - 4x \leq 0 : x, y \in \mathbb{R}\} \) is a convex set.
D. A set \( S = \{(x, y) \mid x^2 + 4y^2 \geq 12 : x, y \in \mathbb{R}\} \) is a convex set.
If p is a prime number and a group G is of the order p2, then G is:
A weight of $500\,$N is held on a smooth plane inclined at $30^\circ$ to the horizontal by a force $P$ acting at $30^\circ$ to the inclined plane as shown. Then the value of force $P$ is:
A steel wire of $20$ mm diameter is bent into a circular shape of $10$ m radius. If modulus of elasticity of wire is $2\times10^{5}\ \text{N/mm}^2$, then the maximum bending stress induced in wire is: