The generator matrix of a \( (6,3) \) binary linear block code is given by
The minimum Hamming distance \( d_{{min}} \) between codewords equals (answer in integer).
Step 1: Form the codewords
The generator matrix \( G \) defines the codewords of the linear block code. The codewords are obtained by multiplying the message vector \( \mathbf{m} \) with the generator matrix \( G \). The message vector \( \mathbf{m} \) has 3 bits (since it is a \( (6,3) \) code), and can be represented as \( \mathbf{m} = [m_1 \, m_2 \, m_3] \). The corresponding codeword \( \mathbf{c} \) is given by: \[ \mathbf{c} = \mathbf{m} G. \] The possible message vectors \( \mathbf{m} \) are all 3-bit combinations, so we calculate the codewords for \( \mathbf{m} = [0 0 0] \), \( \mathbf{m} = [0 0 1] \), \( \mathbf{m} = [0 1 0] \), etc.
Step 2: Compute the codewords
For \( \mathbf{m} = [0 0 0] \): \[ \mathbf{c} = [0 0 0] G = [0 0 0 0 0 0] \] For \( \mathbf{m} = [0 0 1] \): \[ \mathbf{c} = [0 0 1] G = [0 0 1 1 1 0] \] For \( \mathbf{m} = [0 1 0] \): \[ \mathbf{c} = [0 1 0] G = [0 1 0 0 1 1] \] For \( \mathbf{m} = [0 1 1] \): \[ \mathbf{c} = [0 1 1] G = [0 1 1 1 0 1] \] For \( \mathbf{m} = [1 0 0] \): \[ \mathbf{c} = [1 0 0] G = [1 0 0 1 0 1] \] For \( \mathbf{m} = [1 0 1] \): \[ \mathbf{c} = [1 0 1] G = [1 0 1 1 1 0] \] For \( \mathbf{m} = [1 1 0] \): \[ \mathbf{c} = [1 1 0] G = [1 1 0 0 1 0] \] For \( \mathbf{m} = [1 1 1] \): \[ \mathbf{c} = [1 1 1] G = [1 1 1 1 0 1] \]
Step 3: Compute the Hamming distance
The Hamming distance between two codewords is the number of positions at which the corresponding symbols differ. To find \( d_{{min}} \), we need to calculate the pairwise Hamming distances between all codewords: The Hamming distance between codeword \( [0 0 0 0 0 0] \) and all other codewords is:
\( d([0 0 0 0 0 0], [0 0 1 1 1 0]) = 3 \)
\( d([0 0 0 0 0 0], [0 1 0 0 1 1]) = 3 \)
\( d([0 0 0 0 0 0], [0 1 1 1 0 1]) = 4 \)
\( d([0 0 0 0 0 0], [1 0 0 1 0 1]) = 3 \)
\( d([0 0 0 0 0 0], [1 0 1 1 1 0]) = 4 \)
\( d([0 0 0 0 0 0], [1 1 0 0 1 0]) = 4 \)
\( d([0 0 0 0 0 0], [1 1 1 1 0 1]) = 4 \)
Continuing this process for the remaining codewords, the minimum Hamming distance between any pair of codewords is found to be 3. Thus, the minimum Hamming distance \( d_{{min}} = 3 \).
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
Two resistors are connected in a circuit loop of area 5 m\(^2\), as shown in the figure below. The circuit loop is placed on the \( x-y \) plane. When a time-varying magnetic flux, with flux-density \( B(t) = 0.5t \) (in Tesla), is applied along the positive \( z \)-axis, the magnitude of current \( I \) (in Amperes, rounded off to two decimal places) in the loop is (answer in Amperes).
A 50 \(\Omega\) lossless transmission line is terminated with a load \( Z_L = (50 - j75) \, \Omega.\) { If the average incident power on the line is 10 mW, then the average power delivered to the load
(in mW, rounded off to one decimal place) is} _________.
In the circuit shown below, the AND gate has a propagation delay of 1 ns. The edge-triggered flip-flops have a set-up time of 2 ns, a hold-time of 0 ns, and a clock-to-Q delay of 2 ns. The maximum clock frequency (in MHz, rounded off to the nearest integer) such that there are no setup violations is (answer in MHz).