Step 1: Write the given differential equation.
\[
\left(x - (x + y)\log(x + y)\right) dx + x\,dy = 0
\]
Step 2: Simplify the first term.
\[
x - (x + y)\log(x + y) = x - x\log(x + y) - y\log(x + y)
= x(1 - \log(x + y)) - y\log(x + y)
\]
So the equation becomes:
\[
[x(1 - \log(x + y)) - y\log(x + y)] dx + x\,dy = 0 \tag{1}
\]
Step 3: Use substitution. Let
\[
u = x + y \quad \Rightarrow \quad du = dx + dy \Rightarrow dy = du - dx
\]
\[
Also, \quad y = u - x
\]
Now plug into the differential equation:
\[
\left[x - u \log u\right] dx + x(dy) = 0
\Rightarrow \left[x - u \log u\right] dx + x(du - dx) = 0
\]
Step 4: Simplify the equation.
\[
[x - u \log u] dx + x\,du - x\,dx = 0
\Rightarrow -u \log u \, dx + x\,du = 0
\]
Step 5: Rearranging gives
\[
x\,du = u \log u\, dx
\Rightarrow \frac{du}{\log u} = \frac{u}{x} dx
\]
Step 6: Separate and integrate.
Bring all \(u\) terms to one side:
\[
\frac{1}{u \log u} du = \frac{1}{x} dx
\]
Integrate both sides:
\[
\int \frac{1}{u \log u} du = \int \frac{1}{x} dx
\Rightarrow \log(\log u) = \log x + \log C = \log(Cx)
\]
\[
\Rightarrow \log u = Cx \quad (\text{exponentiate both sides})
\Rightarrow \log(x + y) = Cx
\]