Question:

The general solution of the differential equation \( \tan x \tan y \, dx + \cos^2 x \csc^2 y \, dy = 0 \) is:

Show Hint

When separating variables, make sure to isolate terms involving \( x \) and \( y \) to facilitate integration. Use standard integrals for trigonometric functions.
Updated On: May 21, 2025
  • \( \tan x + \cot^2 y = C \)
  • \( \cot x - \tan^2 y = C \)
  • \( \tan^2 x - \cot^2 y = C \)
  • \( \cot^2 x + \tan^2 y = C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

We are given the differential equation: \[ \tan x \tan y \, dx + \cos^2 x \csc^2 y \, dy = 0 \] Separate the variables: \[ \tan x \, dx = - \cos^2 x \csc^2 y \, dy \] Now, rewrite the equation: \[ \frac{\sin x \cos x}{\cos^2 x} \, dx = - \frac{\sin^2 y}{\cos^2 y} \, dy \] Simplifying, we get: \[ \tan x \, dx = - \cot^2 y \, dy \] Now, integrate both sides: \[ \int \tan x \, dx = - \int \cot^2 y \, dy \] The integral of \( \tan x \) is \( \ln |\sec x| \) and the integral of \( \cot^2 y \) is \( -\cot y \). So, we have: \[ \ln |\sec x| = \cot y + C \] Rearrange this equation to get: \[ \tan^2 x - \cot^2 y = C \] Thus, the correct answer is option (3), \( \tan^2 x - \cot^2 y = C \).
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Write the differential equation
Given: \( \tan x \tan y \, dx + \cos^2 x \csc^2 y \, dy = 0 \).

Step 2: Rearrange the terms
Rewrite as:
\[ \tan x \tan y \, dx = - \cos^2 x \csc^2 y \, dy \]
or \[ \frac{dy}{dx} = - \frac{\tan x \tan y}{\cos^2 x \csc^2 y} \].

Step 3: Simplify the expression
Recall that \(\csc y = \frac{1}{\sin y}\), so \(\csc^2 y = \frac{1}{\sin^2 y}\).
Also, \(\tan y = \frac{\sin y}{\cos y}\).

Substitute these:
\[ \frac{dy}{dx} = - \frac{\tan x \cdot \frac{\sin y}{\cos y}}{\cos^2 x \cdot \frac{1}{\sin^2 y}} = - \frac{\tan x \sin y / \cos y}{\cos^2 x / \sin^2 y} = - \frac{\tan x \sin y}{\cos y} \times \frac{\sin^2 y}{\cos^2 x} \]
Simplify:
\[ \frac{dy}{dx} = - \frac{\tan x \sin^3 y}{\cos y \cos^2 x} \].

Step 3 can be tedious, so instead, try to separate variables by rearranging the original equation as:
\[ \frac{\tan x \tan y}{\cos^2 x \csc^2 y} dx + dy = 0 \].
Or better, rewrite original form to separate variables:
\[ \frac{\tan x}{\cos^2 x} dx + \frac{\csc^2 y}{\tan y} dy = 0 \].

Step 4: Express in separable form
Note: \(\frac{\tan x}{\cos^2 x} = \frac{\sin x / \cos x}{\cos^2 x} = \sin x / \cos^3 x\).
Similarly, \(\frac{\csc^2 y}{\tan y} = \frac{1/\sin^2 y}{\sin y / \cos y} = \frac{1}{\sin^2 y} \times \frac{\cos y}{\sin y} = \frac{\cos y}{\sin^3 y}\).

So the equation becomes:
\[ \sin x / \cos^3 x \, dx + \cos y / \sin^3 y \, dy = 0 \].

Step 5: Integrate both parts
Integrate:
\[ \int \frac{\sin x}{\cos^3 x} dx + \int \frac{\cos y}{\sin^3 y} dy = C \].

Use substitution:
For \(x\)-integral: Let \(t = \cos x\), so \(dt = -\sin x dx \Rightarrow -dt = \sin x dx\).
Then, \[ \int \frac{\sin x}{\cos^3 x} dx = \int \frac{-dt}{t^3} = -\int t^{-3} dt = -\left( \frac{t^{-2}}{-2} \right) + C = \frac{1}{2 t^2} + C = \frac{1}{2 \cos^2 x} + C \].

For \(y\)-integral: Let \(u = \sin y\), so \(du = \cos y dy\).
Then, \[ \int \frac{\cos y}{\sin^3 y} dy = \int \frac{du}{u^3} = \int u^{-3} du = \frac{u^{-2}}{-2} + C = -\frac{1}{2 \sin^2 y} + C \].

Step 6: Write the combined solution
Sum of integrals equals constant:
\[ \frac{1}{2 \cos^2 x} - \frac{1}{2 \sin^2 y} = C \].
Multiply both sides by 2:
\[ \frac{1}{\cos^2 x} - \frac{1}{\sin^2 y} = C' \].

Step 7: Express solution in terms of tangent and cotangent
Recall: \( \frac{1}{\cos^2 x} = \sec^2 x = 1 + \tan^2 x\), and \( \frac{1}{\sin^2 y} = \csc^2 y = 1 + \cot^2 y\).
So,
\[ (1 + \tan^2 x) - (1 + \cot^2 y) = C' \] which simplifies to:
\[ \tan^2 x - \cot^2 y = C \].

Final Answer:
The general solution of the differential equation is:
\[ \tan^2 x - \cot^2 y = C \].
Was this answer helpful?
0
0