Step 1: Write the differential equation
Given: \( \tan x \tan y \, dx + \cos^2 x \csc^2 y \, dy = 0 \).
Step 2: Rearrange the terms
Rewrite as:
\[
\tan x \tan y \, dx = - \cos^2 x \csc^2 y \, dy
\]
or
\[
\frac{dy}{dx} = - \frac{\tan x \tan y}{\cos^2 x \csc^2 y}
\].
Step 3: Simplify the expression
Recall that \(\csc y = \frac{1}{\sin y}\), so \(\csc^2 y = \frac{1}{\sin^2 y}\).
Also, \(\tan y = \frac{\sin y}{\cos y}\).
Substitute these:
\[
\frac{dy}{dx} = - \frac{\tan x \cdot \frac{\sin y}{\cos y}}{\cos^2 x \cdot \frac{1}{\sin^2 y}} = - \frac{\tan x \sin y / \cos y}{\cos^2 x / \sin^2 y} = - \frac{\tan x \sin y}{\cos y} \times \frac{\sin^2 y}{\cos^2 x}
\]
Simplify:
\[
\frac{dy}{dx} = - \frac{\tan x \sin^3 y}{\cos y \cos^2 x}
\].
Step 3 can be tedious, so instead, try to separate variables by rearranging the original equation as:
\[
\frac{\tan x \tan y}{\cos^2 x \csc^2 y} dx + dy = 0
\].
Or better, rewrite original form to separate variables:
\[
\frac{\tan x}{\cos^2 x} dx + \frac{\csc^2 y}{\tan y} dy = 0
\].
Step 4: Express in separable form
Note: \(\frac{\tan x}{\cos^2 x} = \frac{\sin x / \cos x}{\cos^2 x} = \sin x / \cos^3 x\).
Similarly, \(\frac{\csc^2 y}{\tan y} = \frac{1/\sin^2 y}{\sin y / \cos y} = \frac{1}{\sin^2 y} \times \frac{\cos y}{\sin y} = \frac{\cos y}{\sin^3 y}\).
So the equation becomes:
\[
\sin x / \cos^3 x \, dx + \cos y / \sin^3 y \, dy = 0
\].
Step 5: Integrate both parts
Integrate:
\[
\int \frac{\sin x}{\cos^3 x} dx + \int \frac{\cos y}{\sin^3 y} dy = C
\].
Use substitution:
For \(x\)-integral: Let \(t = \cos x\), so \(dt = -\sin x dx \Rightarrow -dt = \sin x dx\).
Then,
\[
\int \frac{\sin x}{\cos^3 x} dx = \int \frac{-dt}{t^3} = -\int t^{-3} dt = -\left( \frac{t^{-2}}{-2} \right) + C = \frac{1}{2 t^2} + C = \frac{1}{2 \cos^2 x} + C
\].
For \(y\)-integral: Let \(u = \sin y\), so \(du = \cos y dy\).
Then,
\[
\int \frac{\cos y}{\sin^3 y} dy = \int \frac{du}{u^3} = \int u^{-3} du = \frac{u^{-2}}{-2} + C = -\frac{1}{2 \sin^2 y} + C
\].
Step 6: Write the combined solution
Sum of integrals equals constant:
\[
\frac{1}{2 \cos^2 x} - \frac{1}{2 \sin^2 y} = C
\].
Multiply both sides by 2:
\[
\frac{1}{\cos^2 x} - \frac{1}{\sin^2 y} = C'
\].
Step 7: Express solution in terms of tangent and cotangent
Recall: \( \frac{1}{\cos^2 x} = \sec^2 x = 1 + \tan^2 x\), and \( \frac{1}{\sin^2 y} = \csc^2 y = 1 + \cot^2 y\).
So,
\[
(1 + \tan^2 x) - (1 + \cot^2 y) = C'
\]
which simplifies to:
\[
\tan^2 x - \cot^2 y = C
\].
Final Answer:
The general solution of the differential equation is:
\[
\tan^2 x - \cot^2 y = C
\].