The function \( f(x) \) is defined as follows:
\[ f(x) = \begin{cases} x & \text{for } 0 \le x \le 1 \\ 1 & \text{for } x \ge 1 \\ 0 & \text{otherwise} \end{cases} \]
The properties of the function are as follows:
\[ f_1(x) = f(-x) \quad \text{for all } x \] \[ f_2(x) = -f(x) \quad \text{for all } x \] \[ f_3(x) = f(f(x)) \quad \text{for all } x \]
Let \( f(x) = \log x \) and \[ g(x) = \frac{x^4 - 2x^3 + 3x^2 - 2x + 2}{2x^2 - 2x + 1} \] Then the domain of \( f \circ g \) is: