The function \( f(x) \) is defined as follows:
\[ f(x) = \begin{cases} x & \text{for } 0 \le x \le 1 \\ 1 & \text{for } x \ge 1 \\ 0 & \text{otherwise} \end{cases} \]
The properties of the function are as follows:
\[ f_1(x) = f(-x) \quad \text{for all } x \] \[ f_2(x) = -f(x) \quad \text{for all } x \] \[ f_3(x) = f(f(x)) \quad \text{for all } x \]
If the domain of the function \[ f(x)=\log\left(10x^2-17x+7\right)\left(18x^2-11x+1\right) \] is $(-\infty,a)\cup(b,c)\cup(d,\infty)-\{e\}$, then $90(a+b+c+d+e)$ equals
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: