Rate law for the reaction can be expressed as: \[ \text{Rate} = k[\text{NO}]^p[\text{Br}_2]^q \] Where \( p \) is the order with respect to NO and \( q \) is the order with respect to $\text{Br}_{2}$.
(a) Determining the order with respect to NO (\( p \)) Compare experiments 1 and 2 to eliminate the effect of $\text{Br}_{2}$ concentration and find \( p \). From experiments 1 and 2: \[ \frac{1 \times 10^{-3}}{3 \times 10^{-3}} = \frac{k[0.05]^p[0.05]^q}{k[0.05]^p[0.15]^q} \] \[ \frac{1}{3} = \left( \frac{1}{3} \right)^q \quad \Rightarrow \quad q = 1 \] Determining the order with respect to $\text{Br}_{2}$ (\( q \)) Compare experiments 1 and 3 to eliminate the effect of NO concentration and find \( p \). From experiments 1 and 3: \[ \frac{9 \times 10^{-3}}{1 \times 10^{-3}} = \frac{k[0.15]^p[0.05]^q}{k[0.05]^p[0.05]^q} \] \[ \frac{9}{1} = \left( \frac{3}{1} \right)^p \quad \Rightarrow \quad p = 2 \] Thus, the order with respect to NO is 2 and the order with respect to $\text{Br}_{2}$s is 1.
(b) Calculating the rate constant (k) Use the rate law and the data from any experiment to solve for \( k \). Using experiment 1: \[ 1 \times 10^{-3} = k[0.05]^2[0.05] \] \[ k = \frac{1 \times 10^{-3}}{(0.05)^3} = 8 \, \text{L}^2 \, \text{mol}^{-2} \, \text{s}^{-1} \]
Determining the rate when the concentrations of NO and $\text{Br}_{2}$ are 0.4 M and 0.2 M Now that we have the value of \( k \), we can use it to calculate the rate when [NO] = 0.4 M and [$\text{Br}_{2}$] = 0.2 M. \[ \text{Rate} = k[\text{NO}]^2[\text{Br}_2] \] \[ \text{Rate} = 8 \, \text{L}^2 \, \text{mol}^{-2} \, \text{s}^{-1} \times (0.4)^2 \times 0.2 \] \[ \text{Rate} = 8 \times 0.16 \times 0.2 = 2.56 \times 10^{-1} \, \text{mol L}^{-1} \, \text{s}^{-1} \]