The following distribution shows the marks of 230 students in a particular subject. If the median marks are 46, then find the values of \(x\) and \(y\).
Marks | Number of Students |
---|---|
10 -- 20 | 12 |
20 -- 30 | 30 |
30 -- 40 | \(x\) |
40 -- 50 | 65 |
50 -- 60 | \(y\) |
60 -- 70 | 25 |
70 -- 80 | 18 |
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Consider the following frequency distribution:
Value | 4 | 5 | 8 | 9 | 6 | 12 | 11 |
---|---|---|---|---|---|---|---|
Frequency | 5 | $ f_1 $ | $ f_2 $ | 2 | 1 | 1 | 3 |
Suppose that the sum of the frequencies is 19 and the median of this frequency distribution is 6.
For the given frequency distribution, let:
Match each entry in List-I to the correct entry in List-II and choose the correct option.
List-I
List-II
'प्रेम सबको जोड़ता है।' 'तंतर-वादियों' कथा के आधार पर इस कथन को स्पष्ट कीजिए।