Question:

The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is Rs 18. Find the missing frequency f.

Daily pocket11 - 1313 - 1515 - 1717 - 1919 - 2121 - 2323 - 25
Number of workers76913f54

Updated On: Nov 8, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

To find the class mark (\(x_i\)) for each interval, the following relation is used.

Class mark \((x_i)\) = \(\frac {\text{Upper \,limit + Lower \,limit}}{2}\)

Given that, mean pocket allowance,   

Taking 18 as assured mean  (a), \(d_i\), and \(f_id_i\) can be calculated as follows.  

Daily pocket allowance (in Rs) Number of children (\(f_i\))  Class mark   \(\bf{x_i}\) \(\bf{d_i = x_i -150}\)  \(\bf{f_id_i}\)   

11 - 13

7

-6

-6

-42

13 - 15 

6

14

-4

-24

15 - 17

 9 

16

-2

-18

17 - 19

13

18

0

0

19 - 21

\(f\)

20

2

2\(f\)

21 - 23

5

22

4

20

23 - 25

4

24

6

24

Total 

\(\sum f_i\) = 44 + \(f\)

 

 

2\(f\) - 40

 

From the table, we obtain

\(\sum f_i = 44 +f\)
\(\sum f_id_i =  2f - 40\)

Mean, \(\overset{-}{x} = a + (\frac{\sum f_id_i}{\sum f_i})\)

         18 = \(18 + (\frac{2f - 40 }{44 + f})\)

          0  =\(\frac{2f - 40 }{44 + f}\)

 2\(f\) - 40 = 0
        2\(f\) = 40
          \(f\) = 20

Hence, the missing frequency f is 20.  

Was this answer helpful?
0
0

Top Questions on Mean of Grouped Data

View More Questions