$5 \times10^{-3} mol^{-2}dm^6$
$1 \times 10^3 mol^{-2}dm^6$
$5 \times 10^{3} mol^{-2}dm^6$
$ 2 \times 10^3 mol^{-2}dm^6$
$2 \times 10^{-3} mol^{-2}dm^6$
Reaction:
\( N_2(g) + 3H_2(g) ⇌ 2NH_3(g) \)
Given concentrations at equilibrium:
Equilibrium constant expression:
\( K_c = \frac{[NH_3]^2}{[N_2][H_2]^3} \)
Substituting the values:
\( K_c = \frac{(2 \times 10^{-2})^2}{(1 \times 10^{-2})(2 \times 10^{-2})^3} \)
Simplifying:
Numerator = \( 4 \times 10^{-4} \)
Denominator = \( 1 \times 10^{-2} \times 8 \times 10^{-6} = 8 \times 10^{-8} \)
\( K_c = \frac{4 \times 10^{-4}}{8 \times 10^{-8}} = 0.5 \times 10^4 = 5 \times 10^3 \, mol^{-2} \, dm^6 \)
Consider the following equilibrium, $$ \text{CO(g)} + \text{H}_2\text{(g)} \rightleftharpoons \text{CH}_3\text{OH(g)} $$ 0.1 mol of CO along with a catalyst is present in a 2 dm$^3$ flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH$_3$OH is formed. The $ K_p $ is ...... x $ 10^7 $ (nearest integer).
Given: $ R = 0.08 \, \text{dm}^3 \, \text{bar} \, \text{K}^{-1} \, \text{mol}^{-1} $
Assume only methanol is formed as the product and the system follows ideal gas behavior.
The pH of a 0.01 M weak acid $\mathrm{HX}\left(\mathrm{K}_{\mathrm{a}}=4 \times 10^{-10}\right)$ is found to be 5 . Now the acid solution is diluted with excess of water so that the pH of the solution changes to 6 . The new concentration of the diluted weak acid is given as $\mathrm{x} \times 10^{-4} \mathrm{M}$. The value of x is _______ (nearest integer).
A body of mass $m$ is suspended by two strings making angles $\theta_{1}$ and $\theta_{2}$ with the horizontal ceiling with tensions $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ simultaneously. $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ are related by $\mathrm{T}_{1}=\sqrt{3} \mathrm{~T}_{2}$. the angles $\theta_{1}$ and $\theta_{2}$ are