
| Column-I | Column-II | ||
|---|---|---|---|
| P | ![]() | i | Diastereomer |
| Q | ![]() | ii | Identical |
| R | ![]() | iii | Enantiomer |
| S | ![]() | ||
P→2, Q→3, R→2, S→2
P→3, Q→1, R→1, S→2
P→2, Q→1, R→1, S→3
P→2, Q→3, R→3, S→1

So the correct match is option (C):P→2, Q→1, R→1, S→3
Consider the following reaction sequence.

Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
Hydrocarbons are classified under the special heads as stated below:
Those compounds where there is a single bond present between carbon atoms and are saturated with atoms of hydrogen are saturated hydrocarbons. They are the prime component of petroleum fuel. Carbon atoms bond themselves to as many hydrogen atoms as they can. They undergo the process of hybridization, and also, do not have double or triple bonds. The formula for alkanes which is the most common hydrocarbon is CnH2n+2. Saturated hydrocarbons have an akin molecular formula as hydrocarbons.
Hydrocarbons comprise at least one double or triple bond between carbon atoms known as unsaturated hydrocarbons. Alkenes are organic compounds that comprise double bonds, whereas alkynes are triple bonded. Here, the situation is the opposite of saturated hydrocarbons as the carbon atoms don't bond themselves with as many hydrogen atoms as possible. When it comes to hydrogen atoms, they are unsaturated.
The term denotes the hydrocarbons formed as a result of the chemical degradation of fats. Aliphatic hydrocarbons are generally chemical compounds. Their structure includes one or more hydrogen atoms which are replaced with a halogen. They are linked in chains in single, double, or triple bonds without any rings. Propane, butane, methane, and ethane serve as good examples of aliphatic hydrocarbons.
They are discriminated against because of the benzene rings present in them. They give away different types of aroma. These hydrocarbons comprise only hydrogen and carbon atoms. They are used extensively in fields of medicine, hygiene, and fashion.