Column-I | Column-II | ||
---|---|---|---|
P | ![]() | i | Diastereomer |
Q | ![]() | ii | Identical |
R | ![]() | iii | Enantiomer |
S | ![]() |
P→2, Q→3, R→2, S→2
P→3, Q→1, R→1, S→2
P→2, Q→1, R→1, S→3
P→2, Q→3, R→3, S→1
So the correct match is option (C):P→2, Q→1, R→1, S→3
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
A solid glass sphere of refractive index $ n = \sqrt{3} $ and radius $ R $ contains a spherical air cavity of radius $ \dfrac{R}{2} $, as shown in the figure. A very thin glass layer is present at the point $ O $ so that the air cavity (refractive index $ n = 1 $) remains inside the glass sphere. An unpolarized, unidirectional and monochromatic light source $ S $ emits a light ray from a point inside the glass sphere towards the periphery of the glass sphere. If the light is reflected from the point $ O $ and is fully polarized, then the angle of incidence at the inner surface of the glass sphere is $ \theta $. The value of $ \sin \theta $ is ____
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____.
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is:
Hydrocarbons are classified under the special heads as stated below:
Those compounds where there is a single bond present between carbon atoms and are saturated with atoms of hydrogen are saturated hydrocarbons. They are the prime component of petroleum fuel. Carbon atoms bond themselves to as many hydrogen atoms as they can. They undergo the process of hybridization, and also, do not have double or triple bonds. The formula for alkanes which is the most common hydrocarbon is CnH2n+2. Saturated hydrocarbons have an akin molecular formula as hydrocarbons.
Hydrocarbons comprise at least one double or triple bond between carbon atoms known as unsaturated hydrocarbons. Alkenes are organic compounds that comprise double bonds, whereas alkynes are triple bonded. Here, the situation is the opposite of saturated hydrocarbons as the carbon atoms don't bond themselves with as many hydrogen atoms as possible. When it comes to hydrogen atoms, they are unsaturated.
The term denotes the hydrocarbons formed as a result of the chemical degradation of fats. Aliphatic hydrocarbons are generally chemical compounds. Their structure includes one or more hydrogen atoms which are replaced with a halogen. They are linked in chains in single, double, or triple bonds without any rings. Propane, butane, methane, and ethane serve as good examples of aliphatic hydrocarbons.
They are discriminated against because of the benzene rings present in them. They give away different types of aroma. These hydrocarbons comprise only hydrogen and carbon atoms. They are used extensively in fields of medicine, hygiene, and fashion.