Step 1: Relate \(F\) and \(D\).
For a given temperature, \(F = (\text{number of log reductions})\times D\).
Here, \(99.9999% = 6D\), so
\[
F_{121}(6D)=2.4~\text{min} \Rightarrow D_{121}=\frac{2.4}{6}=0.4~\text{min}.
\]
Step 2: Temperature dependence via \(Z\)-value.
\(D_T = D_{T_{\mathrm{ref}}}\,10^{\frac{T_{\mathrm{ref}}-T}{Z}}\).
With \(T_{\mathrm{ref}}=121^\circ\mathrm{C}\), \(T=143^\circ\mathrm{C}\), \(Z=11^\circ\mathrm{C}\):
\[
D_{143}=0.4\times 10^{\frac{121-143}{11}}
=0.4\times 10^{-2}
=0.004~\text{min}.
\]
Step 3: Required \(12D\) process at \(143^\circ\mathrm{C}\).
\[
F_{143}(12D)=12\times D_{143}=12\times 0.004=0.048~\text{min}.
\]
Final Answer:
\[
\boxed{0.048~\text{min}}
\]