Step 1: Recall definitions
\[
x \mathbin{£} y = |x^2 - y^2|,\quad x \mathbin{@} y = |x - y|,\quad x \mathbin{\$} y = x^2 + y^2
\]
Let \( A = x \mathbin{£} y,\ B = x \mathbin{@} y \)
Step 2: Plug into expression
\[
(A + B)^2 - 2A = A^2 + 2AB + B^2 - 2A
\]
Step 3: Test with numbers (e.g. \( x = 3, y = 2 \))
Then,
\[
x^2 = 9,\quad y^2 = 4,\quad A = 5,\ B = 1 \Rightarrow (6)^2 - 10 = 36 - 10 = 26
\]
\[
x \mathbin{\$} y = x^2 + y^2 = 9 + 4 = 13 \quad \text{Mismatch}
\]
Step 4: Try algebraically
Let’s assume \( x>y \Rightarrow x - y = B,\ x^2 - y^2 = A \)
Then,
\[
A = x^2 - y^2,\quad B = x - y \Rightarrow A = (x - y)(x + y) = B(x + y)
\]
Now try to simplify:
\[
(A + B)^2 - 2A = A^2 + 2AB + B^2 - 2A = (x^2 + y^2)
\Rightarrow x \mathbin{\$} y
\]